Search results for "Weighted Sobolev spaces"

showing 2 items of 2 documents

Traces of weighted function spaces: dyadic norms and Whitney extensions

2017

The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950's. In this paper we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces (of fractional order of smoothness), based on integral averages on dyadic cubes, which is well adapted to extending functions using the Whitney extension operator.

Pure mathematicsTrace (linear algebra)Function spaceGeneral MathematicsDyadic cubesTriebel-Lizorkin spacesweighted Sobolev spaces01 natural sciencesfunktioanalyysiOperator (computer programming)trace theoremsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfunktioavaruudetMathematicsSmoothness (probability theory)010102 general mathematicsExtension (predicate logic)010101 applied mathematicsSobolev spacesovellettu matematiikkaMathematics - Classical Analysis and ODEsBesov spacesVariety (universal algebra)
researchProduct

Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift

2015

Abstract This paper deals with the eigenvalue problem for the operator L = − Δ − x ⋅ ∇ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue λ k of L under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any c > 0 and k ∈ N the following minimization problem min ⁡ { λ k ( Ω ) : Ω quasi-open set , ∫ Ω e | x | 2 / 2 d x ≤ c } has a solution.

Pure mathematicsMinimization of eigenvalueStructure (category theory)01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Weighted Sobolev spaces0101 mathematicsComputingMilieux_MISCELLANEOUSEigenvalues and eigenvectorsMathematicsApplied MathematicsOperator (physics)010102 general mathematicsMinimization problemMathematics::Spectral Theory010101 applied mathematicsDirichlet laplacianDirichlet boundary conditionDirichlet–Laplacian with a driftsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct